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Globally, more than 1.3 billion people, approximately 16% of the world’s population, live with 

some form of disability.  Many, including those with conditions like Parkinson’s, ALS, or muscular 

dystrophy, face significant barriers to computer use and digital access (World Health Organization, 2022). 

Traditional input methods like keyboards and mice often become inaccessible, creating barriers to digital 

learning and independent task completion. These challenges are further compounded by perceptual and 

cognitive impairments, including deficits in smooth pursuit eye movements, which hinder object tracking, 

and impaired predictive motor control, which affects hand-eye coordination necessary for typing or 

controlling a cursor (Chakravarthi et al., 2023). Without adaptive technologies, many individuals risk 

digital exclusion, missing essential opportunities for learning, communication, and participation. Digital 

exclusion translates directly into lost instructional hours, reduced classroom engagement, and inequities in 

test-taking conditions. 

​ As education systems increasingly rely on digital platforms, equitable computer access becomes a 

prerequisite for success. Online assignments, virtual classrooms, learning management systems (e.g., 

Google Classroom, Canvas), and digital testing platforms are standard across K–12 and higher education. 

Students with motor impairments face disproportionate disadvantages when they cannot easily navigate 

these systems. Thus, addressing technological accessibility is essential to closing the education gap and 

ensuring that all students can engage meaningfully in modern learning environments. This paper, 

submitted under Track 2: Innovative Applications of AI, introduces Swype AI, a multimodal hands-free 

computer interface designed to support students with motor impairments in educational environments. 

While touchless computing via voice or gesture shows promise, current solutions face key 

limitations. Speech recognition for users with dysarthria yields only 50–60% accuracy (Masina et al., 

2020), and gesture systems like Kinect remain costly, hardware-dependent, and error-prone under varying 

lighting (Ermolina & Tiberius, 2021).  

 



 

 

System Overview and Architecture 

Swype AI addresses these gaps through a real-time software system that combines natural voice 

and gesture control to replace traditional peripherals. It runs on consumer laptops without requiring 

specialized hardware, and the architecture is structured around two core pipelines: 

 

The voice recognition system (left) uses Term Frequency–Inverse Document Frequency (TF-IDF) 

vectorization to extract important keywords from spoken commands, transforming them into numerical 

feature vectors. A Naïve Bayes classifier then predicts user intent based on these features. To handle 

dynamic inputs, such as names or search queries, the system applies regular expressions (Regex) for 

flexible parameter extraction. Commands are categorized into 36 static actions (e.g., "bold text," "select 

all") and 10 query-based actions (e.g., "compose email to Alice," "search cats"), trained on a custom 

 



 

dataset of 1,530 labeled examples. Preprocessing steps include lowercasing, special character removal, 

and tokenization to optimize recognition accuracy.  

The gesture control system (right) leverages MediaPipe Hands to detect 21 key landmarks per 

frame on the user's hand, generating a 63-feature vector (x, y, z coordinates). These sequential frames are 

classified using a Temporal Convolutional Network (TCN), capable of recognizing both static gestures 

(such as a closed fist) and dynamic gestures (such as a wave upward). Kalman Filters are applied to the 

predicted hand trajectories, and the model was trained on 10 sequences of 30 frames per gesture. 

Swype AI was designed for lightweight, real-time use on consumer-grade hardware. Voice 

samples (n = 1,530) were recorded using a standard laptop microphone in quiet indoor environments. The 

dataset includes inputs from five speakers across diverse accent backgrounds, including two non-native 

English speakers. Gesture sequences (n = 300) were captured via webcam under variable lighting to 

simulate real-world use. A Naïve Bayes classifier was selected due to its efficiency and low memory 

overhead, ideal for deployment on typical Intel Core i5 laptops with 8GB RAM. Swype maintained <30 

ms latency with <350MB peak RAM usage during inference. 

Preliminary Results: 

 

Prototype testing showed 93.1% voice intent accuracy and 88.3% gesture recognition accuracy, 

and demonstrations included document editing in Google Docs, composing and sending emails through 

natural voice commands, and conducting web searches with integrated gesture navigation. Current 

limitations include reduced recognition accuracy for users with severe dysarthria and misclassification of 

dynamic gestures in low light. Future work includes developing a fine-tuned, lightweight transformer 

 



 

model to improve robustness, expanding the dataset to better represent accented and disfluent speech, and 

exploring lightweight onboarding calibration to adapt models to individual speech and gesture patterns. 

Educational Impact and Use Cases 

Swype AI enables students with motor disabilities to independently complete digital learning 

tasks, including writing essays, conducting online research, and navigating LMS platforms like Google 

Classroom and Canvas. Additional features support classroom tasks, including gesture shortcuts for 

annotating PDFs or highlighting passages in e-books, voice macros for quickly accessing assignments or 

grades, and compatibility with exam software that restricts external hardware. In virtual classrooms, 

gestures such as raising a hand can trigger participation tools in Zoom or Google Meet, ensuring full 

engagement in both in-person and online settings. 

A 15-student usability study is planned in collaboration with assistive organizations. The study 

cohort will include participants with dysarthria and varying motor impairments to evaluate performance in 

the intended user population. Each participant will complete three representative tasks (e.g., locating an 

assignment, opening an online quiz, submitting answers) using Swype. The study will measure 

task-completion time and administer the System Usability Scale (SUS) to assess perceived usability and 

learning effectiveness (Lewis & Sauro, 2017). We hypothesize that Swype will improve task efficiency by 

at least 30% while maintaining a SUS score above the standard usability threshold of 70.  All inference 

runs locally on-device; no audio or video data is transmitted externally to maintain user privacy. 

Preliminary outreach included conversations with over 15 accessibility organizations, including 

the Parkinson’s Foundation, the National Multiple Sclerosis Society, and representatives from the U.S. 

Department of Health and Human Services. Feedback emphasized the need for flexible multimodal 

systems that could adapt to users’ changing motor and speech abilities, reinforcing Swype’s design 

choices. To promote transparency and accessibility, Swype AI will be released under the MIT License as 

an open-source project following the Summit. 
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