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Abstract
Data science is emerging as a crucial 21st-century competence, influ-
encing professional practices from citing evidence when advocating
for social change to developing artificial intelligence (AI) models.
For middle and high school students, data science can put formerly
decontextualized subjects into real-world scenarios. Many existing
curricula, however, lack authenticity and personal relevance for stu-
dents. A critique of data science courseware cites the lack of "author
proximity," in which students do not contribute to the data’s pro-
duction or see their personal experiences reflected in the data. This
paper introduces a novel data science curriculum to scaffold middle
and high school students in undertaking real-world data science
practices. Through project-based learning modules, the curriculum
engages students in investigating solutions to community-based
problems through visualization and analysis of live sensor data
and public data sets. Materials include formative assessments to
help educators (especially those from non-math and computing
backgrounds) measure their students’ abilities to identify statistical
patterns, critically evaluate data biases, andmake predictions. Aswe
pilot and co-design with teachers, we will look closely at whether
the curriculum’s resources can successfully support non-technical
practitioners engaging in an integrated curriculum.

CCS Concepts
• Applied computing → Interactive learning environments; •
Social and professional topics → Computational thinking.
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1 Introduction
Data science is emerging as a crucial 21st-century competence,
influencing professional practices from citing evidence when ad-
vocating for social change to developing artificial intelligence (AI)
models. ByMarch 2024, ten states offered data science to students in
grades 6-12, with an additional fifteen piloting curricula or setting
standards [13]. Understanding the nuances of data science can form
a foundation for navigating the capabilities of AI; data science and
AI share competencies in understanding how personal data is used
to train models and critically examining data with “skepticism and
interpretation” [33]. School administrators typically motivate data
science as a means for job readiness, social impact, and improved
math outcomes [44]. However, according to a recent survey of high
schoolers, the chief reasons to study data science are the abundance
of data available and intellectual proficiency with data, with em-
ployment prospects a distant third place [27]. For middle and high
school students, data science can put formerly decontextualized
subjects such as math and statistics into real-world scenarios. Many
existing curricula, however, lack authenticity and personal rele-
vance for students. A critique of existing data science courseware
cites the lack of "author proximity": students do not contribute to
the data’s production or see their personal experiences reflected in
it [30]. An additional challenge is integrating data science as a for-
mal subject into schools and supporting teachers with professional
development and assessments [21].

This paper introduces a novel curriculum to scaffold middle and
high school students in undertaking real-world data science prac-
tices. We intend to study how MIT App Inventor’s mobile data
science toolkit [12] could allow learners to visualize and analyze
both sensor data and public data sets. Through project-based learn-
ing modules aligned with the Big Ideas in K-10 Data Science [39],
the curriculum employs participatory data collection, allowing stu-
dents to lead investigations on topics of personal interest, to foster
higher authorship proximity to their data [2, 8, 28]. These modules
also include adaptable formative assessments to help teachers (espe-
cially those from non-math and computing backgrounds) measure
students’ abilities to identify statistical patterns, critically evaluate
data biases, and make predictions.
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2 Background
2.1 Data Sources and Learning Impact
Much of the scholarship on recent data science curricula for schools
categorizes courseware according to the provenance of its data
with implications on learning goals, student engagement, and op-
portunities for critical inquiry [16, 17, 30]. Datasets can originate
from learner-collected, fictional, or publicly available data, allow-
ing multiple opportunities to build learner competencies and drive
motivations [17]. Collecting sensor data can help students engage
meaningfully in data practices, explore statistical patterns, and
make inferences based on their knowledge of the data context
[16, 30, 31, 35, 40]. With publicly available data, students can expe-
rience how data is used in the workforce and scientific practices
[11, 30]. Rubin calls for students to develop the skills of “data jour-
nalists,” understanding and interpreting others’ data by becoming
familiar with the domain, the measurement process, potential bi-
ases, and scientific limitations in producing that data [43]. In the
case of fictional or public data, however, researchers warn that
materials disconnected from contexts will fail to engage students
and fail to meet crucial learning goals such as drawing conclusions
and making predictions based on real-world connections [21]. An
additional constraint is the cost of materials: sensor-based data sci-
ence curricula have recently launched [17, 20, 29, 48, 53], but rely
on expensive consumer wearables or "probeware" — sensors made
for the education market that must stay tethered to a computer.

2.2 Equity and Constructionism in Data Science
Prior work has established the need for datasets that actively en-
gage students from historically underrepresented communities.
High engagement and task persistence are linked to student work
on personally meaningful topics, a core idea of constructionism
[6, 41]. Student-led work prompts youths’ conceptions of data and
its limitations when creating meaningful data artifacts within a
social context [6, 18]. Recognizing that some data collection meth-
ods can be biased toward specific research goals or ideological
agendas is essential for critically reflecting on the data’s origins
[24]. Additionally, Jiang et. al. suggest that data science practiced
across disciplines validates multiple forms of participation and sup-
ports epistemological pluralism [23, 46]. Cultivating data literacy
for people in non-technical fields also forms an avenue for increas-
ing equity in learning activities [8]. This approach ensures that
activities make sense within broader social contexts, empowering
students to use data to advocate for change [14, 47]. By allowing
learners to decide what questions to ask with data and whether
the necessary data has been collected, students can better engage
with real-world activities, bringing their lived experience and prior
knowledge to the classroom [9, 49]. Dangol & Dasgupta, however,
underscore the need for more research on supporting teachers in
implementing constructionist approaches to teach data literacy [6].

3 Curriculum
The curriculum utilizes a hybrid approach with both learner gener-
ated and public data, allowing students to engage in sensemaking

about short- and long-term trends. The curriculum provides flexi-
bility for different learning goals, using low-dimensional data to in-
troduce concepts, messy datasets to demonstrate issues of bias, and
personally relevant datasets to deepen engagement [8, 33, 45]. By
employing an abstracted, block-based programming environment
within MIT App Inventor’s data science toolkit [12], the curriculum
can lower barriers for non-technical students and facilitate profes-
sional development for teachers. Enabling students to create custom
mobile apps for data collection and analysis also improves acces-
sibility in low-resource contexts where mobile phones are more
prevalent [42]. The curriculum incorporates learner-generated en-
vironmental data collected with micro:bit sensors, an approach not
widely used in previous work. We provide opportunities for stu-
dents to explore the capabilities and limitations of sensors, which
are essential for understanding how AI devices gather data and
interact with the world [33]. The curriculum has a significant focus
on data cleaning, an activity that occupies up to 80% of a data scien-
tist’s time [15, 28], but is often missing from contemporary student
resources (except in YouCubed and scant other materials) [37, 52].
Data cleaning activities are context-dependent, inviting students
to "dig into the circumstances surrounding data collection" [43] to
identify and address data anomalies and uncertainties [4, 28].

3.1 Teaching and Learning Materials
This curriculum includes educator guides, student resources, and as-
sessment modules for teaching data science practices aligned with
the Big 10 Ideas of Data Science [39]. The materials, openly acces-
sible on appinventor.mit.edu, feature structured activities, teaching
slides and scripts, and tool guides. Each project team (3-4 students)
needs one laptop, an iOS/Android phone/tablet supplied by the
student or school, and a micro:bit sensor ($17-22 each). The target
audience includes K-12 middle and high school educators (including
curriculum designers, formal and informal teachers, and school dis-
tricts) and students. The lessons described below show an example
of using environmental data, split across two modules. Each lesson
takes 60-90 minutes to complete.

3.1.1 Module 1: This module aims to educate students on the
fundamentals of collecting, analyzing, and visualizing sensor data
curated from the environment. It provides students with a frame-
work needed to plan investigations for community challenges using
IoT sensors and to prepare them to share the evidence obtained.

Lesson 1: Hands-on experiments with sensors: This lesson
teaches students to connect sensors to a mobile device and visu-
alize the data. It starts with unplugged activities demonstrating
sensor functionality, followed by instructions to connect sensors
to students’ custom mobile apps (created with App Inventor) via
BluetoothLE for real-time data visualization, and concludes with
a game for identifying sensor types as they correlate data outputs
with changes in the physical environment.

Lesson 2: Brainstorming sensor use cases: Students identify
sensors ubiquitous in their environment and imagine their creative
uses, enhancing their understanding of how sensor technology
gathers important data. The lesson includes interactive activities
such as mapping a typical school day with sensor applications and
using Slow Reveal Graphs (an instructional routine to promote
sensemaking of environmental visualizations) [25].
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Lesson 3: Project ideation: Students form teams to pursue their
project ideas, focusing on local environmental issues in their com-
munity. They brainstorm themes (e.g., air quality, water, sanitation,
etc.) using card games, vote on their favorite ideas, and formulate
research questions. After scouting sensor locations around their
school surroundings, they test for proper sensor placement, data
quality, and collection timelines to answer their research question,
then set up sensors to save data automatically to Google Sheets.

Lesson 4: Building data applications: Students use their apps
to import datasets, experiment with different graph types and scales,
and apply these principles to their real-time sensor time series data,
enhancing their understanding of data visualizations.

Lesson 5: Visualizing final sensor data: Students visualize
their group’s collected sensor data to analyze trends relevant to
their original research question. They customize their visualizations
and present their final projects to the community, reflecting on their
accomplishments, challenges, and directions for future inquiries.

3.1.2 Module 2: In this module, students select a public dataset re-
lated to their Module 1 sensor data. They review long-term curated
datasets and their contexts, exploring visualizations, predictions,
and inference through coding activities and scaffolded discussions.

Lesson 6: Visualizing a data set: Students discuss trends in
the sensor data gathered, linking them to broader environmental
and climate change issues. They validate their small data collection
by selecting curated long-term public datasets for further analysis.
Students review spreadsheet features, identify unusual data points,
and program their team’s app to visualize and explore possible
correlations between data series.

Lesson 7: Modeling data: Students start with an unplugged
activity to understand the concept of a line of best fit by visually
fitting lines to sample data points. Teachers use guided prompts to
discuss the value of models for trends, predictions, and confidence
levels. Student teams then add a line of best fit to their app visual-
izations and discuss non-linear models, the slope-intercept form,
and the correlation coefficient, tying these to their sensor data and
potential long-term data collection.

Lesson 8: Cleaning data: Teachers use lesson prompts to dis-
cuss the relevance of anomalies. Student teams distinguish between
in-context and out-of-context anomalies in their public data graphs,
code their apps to detect and remove selective anomalies, and eval-
uate the updated trend line. They then apply these concepts to their
sensor data, comparing emerging trends against the public dataset.

Lesson 9: Predictions and AI analysis with data: Students
identify trends in their public data, use the slope to predict future
values, and extend their graph’s domain in the app. They program
a generative AI chatbot within App Inventor to provide additional
context and analysis. Students examine confounding variables (loca-
tion, human judgment, and organizational ethics) in their personal
and public datasets, recognizing how these can skew results.

3.2 Assessments
Practitioners of project-based learning have noted its difficulty in
assessing awide range of cognitive, interpersonal, and intrapersonal
competencies involved [5, 19]. While standardized tests focus on
lower-order thinking skills, our curriculum targets higher-order
thinking, such as conceptual statistical understanding, outlined in

GAISE II [1]. We also aim to foster positive attitudes toward data
science, including perceived competence, enjoyment, and value,
drawing from the Intrinsic Motivation Inventory [32]. To measure
conceptual growth, we integrate open-response questions related
to the four Big Ideas in K-10 Data Science: (1) formulate statistical
investigative questions, (2) collect/consider data, (3) analyze data,
(4) interpret and communicate data [39]. We use short, formative
"exit tickets" at the end of each lesson for student reflection and
self-assessment of skills covered, guiding them through statistical
reasoning over time [1, 5, 7, 26]. We also base some of our questions
on the LOCUS project’s assessments, aligning with Common Core
and GAISE II standards [38]. This approach helps track learning
trajectories, informs teacher instruction, and provides consistent,
daily feedback to reinforce student learning [36].

4 Discussion and Future Work
In this paper, we present a novel data science curriculum enabling
students to become data readers, communicators, and makers [50,
51]. This is unlike typical sensor-based laboratory investigations
in which students carry out procedures without acting as agents
in producing and using data [17]. We support a scientific data
collection process that serves students’ personal, cultural, or so-
ciopolitical goals [28] to mimic real-world practices [10, 23]. While
we acknowledge that some students may not initially show inter-
est in environmental data [21], engagement can increase when
they reflect on direct community impacts such as heat islands and
flooding. Linking broad issues like climate change to students’ ex-
periences can enhance resonance [30, 34]. Integrating data science
with commonly taught subjects broadens its utility and opens inter-
disciplinary possibilities, making it more relevant to teachers and
students [22]. While students may implicitly engage with ethical
considerations when contextualizing and cleaning data, the curricu-
lum currently lacks specific support for broader ethical discussions,
including data use in AI. Furthermore, while the curriculum touches
on the data pipeline, it does not yet include machine learning activ-
ities, which needs further exploration [33].

Several tensions highlight opportunities for future work, such as
balancing student-driven data collection with the need for teacher
preparation and classroom time. Finding manageable open data for
students is challenging, but curriculum scaffolding can assist with
data cleaning and preparation [3]. We must consider the size and
messiness of curated data to maintain authentic experiences with-
out overwhelming students or teachers. We will continue testing
ways to support problem-definition routines that connect students
to their interests and community issues. Lastly, there is a tension
between using authentic tools connected to professional practice
(such as Python and R) and more accessible tools for computational
thinking (such as MIT App Inventor). While we build on D’Ignazio’s
advocacy for data literacy pathways in non-technical fields [8], our
goal is fostering computational thinking, cross-cutting conceptual
understanding, habits of mind, and processes, rather than job prepa-
ration. Our future efforts will focus on co-designing the curriculum
with teachers and investigating various student data collection
methods from different disciplines (e.g., community surveys, social
media, personal data logs) to ensure that the resources can support
non-technical practitioners.
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