
AIBEE: AI-Driven Block-coding Educational Environment for
Teaching, Learning, and Prototyping AI

Calvin Zhou
W3B Education
San Jose, CA

calvinzhou@w3beducation.org

Abstract— Block-coding environments such as Scratch and
App Inventor have long been used as visual and interactive
tools for STEM education and, in recent years, for
teaching AI. However, studies show that the existing
block-based applications are less effective in AI education
due to drawbacks such as their black box-style
presentation, difficulties in creating teaching content, and
challenges in applying the knowledge to real-world tasks.
This paper proposes AIBEE, an AI-driven Block-coding
Educational Environment, providing functional AI blocks
facilitating the full AI modeling process from data
importing and processing to model training and testing.
The AIBEE system aims to make AI education simpler and
accessible for all by allowing users to interactively create
an AI model using drag-and-drop blocks and instantly
observing the running results without writing any code.
This paper describes the design and implementation of the
AIBEE system, as well as the planned experimental tests to
comparatively evaluate its performance against other
block-based educational environments.
Keywords— Block-based Coding, Educational Technology,
AI Learning Platform

I. INTRODUCTION
Among various AI educational tools or systems currently in

active use, block-based programming or block-coding
environments have been widely leveraged in computer science
and recently in AI education, demonstrating decent
performance and effectiveness for both teaching and learning
[1]. Distinct from conventional text-based or other visual
programming approaches, block coding uses connected puzzle
pieces or boxes as visual cues to help the user establish the
logic and processes of computational entities and data flows
[2]. The most popular block-coding environments are MIT
Scratch [3] [4] and MIT App Inventor [5], both having tens of
millions of users worldwide.
Despite the ease of use and extensive acceptance of

block-coding tools like Scratch and App Inventor, studies have
shown their drawbacks, including:

● Teaching AI in black box-style blocks only
demonstrates results without revealing the components
inside to help the learners understand the conceptual
foundations [6]

● Lack of comprehensive curriculum and interactive
instructional support due to difficulties with creating
teaching content and the lack of assisted teaching
solutions [7]

Furthermore, most of these environments do not allow the
learners to export the created models for other applications or

deploy them for the learners’ real-life use cases, causing a gap
between learning and actual usage.
To address these challenges, this paper proposes AIBEE, an

AI-driven Block-coding Educational Environment, aiming to
solve the above problems with the following functionalities:

● Different levels and types of AI blocks that support
high-level conceptual education as well as low-level
model fine-tuning

● AI-driven content generation that assists curriculum
creation and development

● An interactive AI teaching assistant that provides
in-context instructional support

● Importing/exporting functionality for AI models to and
from standard formats to facilitate an open system

● Integrated AI application hosting that allows the users to
run the created models after learning/prototyping

II. METHODOLOGY
The AIBEE project consists of the following approaches: UI

design, system architecture, and data flow.

A. UI Design
The AIBEE system is implemented as a cloud-hosted web

application, with the main UI shown in Fig. 1.

Fig. 1 Web UI Design

The web app UI adapts a 3-column layout with a left panel,
central build space, and right display space. The upper part of
the left panel is the block space including a search box, where
the user can explore the AI blocks available to build an
AIBEE Blockwork. The blocks are categorized into functional
groups such as datasets, processing, models, training,
visualization, evaluation, and running. Users can drag a block
from the block space and drop it into the central build space.

mailto:calvinzhou@w3beducation.org


The lower section of the left panel serves as the AI teaching
zone. This area includes a chatbot for text-based
conversational assistance and an AI instructor. Initially, the AI
instructor will be a pre-recorded video player, but a virtual AI
instructor is planned for future implementation. The central
space is the work area where the user can build the AIBEE
Blockwork to learn and test AI models. The default block
view can be switched to the code view which displays the
Python code generated from the current Blockwork. The
right-side space displays the output of the Python code
corresponding to the blocks, which is similar to the work style
of a Jupyter Notebook. The visual output view can be
switched to a text view which shows the related tutorials or the
help documents of this system.

B. System Architecture
As shown in Figure 2, the AIBEE system is developed as a

web application hosted on cloud infrastructure such as AWS.
The web front end (WFE) is built using the Node.js
framework and Google Blockly library [8] [9]. The service
layer uses the microservice design, including web service
APIs exposed as a user, dataset, model, code conversion, and
block management. The services are routed using an AWS
API gateway connecting the WFE. The backend storage uses
AWS S3 file storage for saving blockwork files and AWS
RDS for saving system data. The AI model training and
running are driven by a Jupyter [10] Server hosted on AWS
SageMaker service.

Fig. 2 System Architecture

C. Data Flow
The main data flow of this system uses a client-server style

as shown in Figure 3. The core service handling the data flow
is a custom node.js (AIBEE) module which validates the
blockwork design and converts it to Jupyter notebook (ipynb)

code. All the blocks in the AIBEE system are created as
custom Google Blockly blocks, together with predefined
variables, functions, and corresponding Python code.

III. EXPERIMENTAL TESTS
To evaluate the performance of AIBEE in actual learning

and teaching, experimental AI education sessions have been
scheduled in June and July as free, 5-day summer camps. We
will collect approximately 60 registrations of high school
students and randomly assign them to 3 groups: AIBEE,
Scratch, and App Inventor. Each session will introduce
students to one machine-learning module and one
deep-learning module. At the end of the 5 days, students will
be required to complete a survey for qualitative analysis and a
quiz for quantitative evaluation of AIBEE’s effectiveness.

IV. CONCLUSION
This paper describes the background, idea, and approach of

the AIBEE system, an AI-driven Block-coding Educational
Environment. This project has great potential as an effective
and innovative solution to assist K-12 schools and higher
education institutions in making AI education easier and
accessible for all.

REFERENCES
[1] D. Weintrop, “Block-based Programming in Computer Science

Education – Communications of the ACM,” Commun. ACM, vol. 62,
no. 8, pp. 22–25, Aug. 2019, doi: 10.1145/3341221.

[2] D. Weintrop and U. Wilensky, “Comparing Block-Based and
Text-Based Programming in High School Computer Science
Classrooms,” ACM Trans. Comput. Educ., vol. 18, no. 1, pp. 1–25,
Mar. 2018, doi: 10.1145/3089799.

[3] J. Maloney, L. Burd, Y. Kafai, N. Rusk, B. Silverman, and M.
Resnick, “Scratch: a Sneak Preview,” in Proceedings. Second
International Conference on Creating, Connecting and Collaborating
through Computing, 2004., Jan. 2004, pp. 104–109. doi:
10.1109/C5.2004.1314376.

[4] J. Maloney, M. Resnick, N. Rusk, B. Silverman, and E. Eastmond,
“The Scratch Programming Language and Environment,” ACM Trans.
Comput. Educ., vol. 10, no. 4, p. 16:1-16:15, Nov. 2010, doi:
10.1145/1868358.1868363.

[5] B. Magnuson, “Building Blocks for Mobile Games : A multiplayer
framework for App Inventor for Android,” Thesis, Massachusetts
Institute of Technology, Cambridge, MA, USA, 2010. Accessed: Apr.
24, 2024. [Online]. Available:
https://dspace.mit.edu/handle/1721.1/61253

[6] C.-B. Fleger, Y. Amanuel, and J. Krugel, “Learning Tools Using
Block-based Programming for AI Education,” in 2023 IEEE Global
Engineering Education Conference (EDUCON), May 2023, pp. 1–5.
doi: 10.1109/EDUCON54358.2023.10125154.

[7] C. Gresse Von Wangenheim, J. C. R. Hauck, F. S. Pacheco, and M. F.
Bertonceli Bueno, “Visual tools for teaching machine learning in
K-12: A ten-year systematic mapping,” Educ. Inf. Technol., vol. 26,
no. 5, pp. 5733–5778, Sep. 2021, doi: 10.1007/s10639-021-10570-8.

[8] N. Fraser, “Ten things we’ve learned from Blockly,” in 2015 IEEE
Blocks and Beyond Workshop (Blocks and Beyond), Oct. 2015, pp.
49–50. doi: 10.1109/BLOCKS.2015.7369000.

[9] E. Pasternak, R. Fenichel, and A. N. Marshall, “Tips for creating a
block language with blockly,” in 2017 IEEE Blocks and Beyond
Workshop (B&B), Oct. 2017, pp. 21–24. doi:
10.1109/BLOCKS.2017.8120404.

[10] T. Kluyver et al., “Jupyter Notebooks—a publishing format for
reproducible computational workflows,” in Positioning and Power in
Academic Publishing: Players, Agents and Agendas (Proceedings of
the 20th International Conference on Electronic Publishing),
Göttingen, Germany: IOS Press, 2016, pp. 87–90. doi:
10.3233/978-1-61499-649-1-87.


